ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
C. F. Leitten, Jr., R. J. Beaver
Nuclear Technology | Volume 4 | Number 6 | June 1968 | Pages 399-417
Technical Paper and Note | doi.org/10.13182/NT68-A26366
Articles are hosted by Taylor and Francis Online.
Recent technological advancements have stimulated interest in lanthanide compounds as neutron absorbers. Specific fabrication procedures were developed for incorporating chemically stable europium oxide in stainless steel base neutron absorbers. The irradiation of europium oxide -stainless steel base absorbers to neutron absorptions as high as 6 x I021/cm3 resulted in no deleterious effects. The excellent performance of the europium oxide-stainless steel combination in the control rods of the SM-1 and SM-1A reactors further demonstrated their potential in pressurized water reactors. Arc fusion was found superior to conventional high-temperature heat treating for the production of either bulk or dense dispersoids of the lanthanide oxides. Europium molybdate and titanate are attractive compounds that resist attack by water. In addition to its superior resistance to corrosion by water at high temperature, europium molybdate has a substantial europium density. However9 like europium oxide9 it is only compatible with stainless steels having low silicon contents. Europium titanate has a lower europium density but acceptable resistance to water and superior compatibility with conventional stainless steels.