ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
O. M. Stansfield, C. B. Scott, J. Chin
Nuclear Technology | Volume 25 | Number 3 | March 1975 | Pages 517-530
Technical Paper | Fuel | doi.org/10.13182/NT75-A24389
Articles are hosted by Taylor and Francis Online.
Pyrocarbon-coated microspheres of UC2, ThC2, and (Th, U)C2 utilized in fuel for high-temperature gas-cooled reactors will migrate up an imposed thermal gradient during service life. The degree of kernel migration is limited by appropriate core design to retain coating integrity. The kernel migration (amoeba effect) results from carbon transport in the fuel phase and is characterized by a rejected graphite layer on the cool side of the kernel. The thermal gradient provides the dominant driving force for the rate-controlling process, which is the self-diffusion of carbon in the fuel phase. All dicarbide kernel materials show similar kernel migration behavior; however, ThC2 has the most rapid migration rate. The migration rates may be empirically described over the temperature range of 1250 to 1900°C by the expressionwhere