ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
Richard Sporrer, John M. Christenson
Nuclear Technology | Volume 25 | Number 3 | March 1975 | Pages 440-449
Technical Paper | Reactor | doi.org/10.13182/NT75-A24382
Articles are hosted by Taylor and Francis Online.
Fission-product decay heat rates in shutdown 239Pu-fueled fast reactors are determined by direct calculation using a modified version of the CINDER code with a fission-product library of 344 nuclides. Systematic variations in fluence, flux level, irradiation time, and the initial 238U/239pu ratio are made for the ranges of current interest, and their effects on the decay heat rate for the first ten years after reactor shutdown are investigated. Variations in irradiation history and the 238U/239Pu ratio over the ranges considered cause the total decay heat rate to vary by <18% during the first day after shutdown.