ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
Victor A. Maroni, Raymond D. Wolson, Gustav E. Staahl
Nuclear Technology | Volume 25 | Number 1 | January 1975 | Pages 83-91
Technical Paper | Chemical Processing | doi.org/10.13182/NT75-A24351
Articles are hosted by Taylor and Francis Online.
A method is described for removing tritium from liquid lithium fusion reactor blankets by extraction with molten salt. Results of distribution coefficient measurements made with lithium-lithium halide mixtures have demonstrated that tritium is preferentially distributed in the salt phase by a factor >1.0 on a volumetric basis. Other considerations related to (a) mutual solubilities between the salt and metal, (b) phase separation, (c) blanket neutronics, (d) corrosion, (e) fabrication, and (f) recovery of tritium from the salt phase indicate that the extraction process should be feasible. Calculations based on the blanket processing requirements for the reference theta-pinch reactor (RTPR) show that the equipment and power needed to carry out a molten-salt extraction operation on the lithium blanket of the RTPR are reasonable.