ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
David E. Lamkin, Richard L. Brehm
Nuclear Technology | Volume 27 | Number 2 | October 1975 | Pages 273-285
Technical Paper | Fuel | doi.org/10.13182/NT75-A24295
Articles are hosted by Taylor and Francis Online.
An exact closed-form solution for the stresses and strains in an idealized nuclear reactor fuel pin under operational conditions is presented. The fuel is considered as a single region, either solid or annular, which may or may not interact with the surrounding cladding, depending on initial fuel-claddinggap and subsequent reactor operating parameters. Temperature-dependent thermal conductivity and irradiation swelling and temperature-independent creep in both fuel and cladding are allowed. Although the model is considerably simplified from those used in the more detailed numerical simulations, design parameters of interest can be easily and readily studied, and the important mechanisms contributing to cladding deformation can be identified. More importantly, however, the exact solutions can be used as a benchmark to check the accuracy of the more detailed but necessarily approximate numerical techniques. Example calculations are presented for a fuel pin operating under typical liquid-metal fast breeder reactor conditions for cases with and without fuel-cladding interaction occurring over the lifetime of the pin.