ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Friedbert Kappler
Nuclear Technology | Volume 27 | Number 2 | October 1975 | Pages 224-232
Technical Paper | Reactor | doi.org/10.13182/NT75-A24289
Articles are hosted by Taylor and Francis Online.
The problem of strong space-dependent neutron spectra appearing at boundaries is studied at a sodium-iron interface in slab geometry. The spatial neutron spectra from a 14-MeV neutron source were measured in the energy range from 100 eV to 4.5 MeV. For the energy E < 200 keV, the time-of-flight method was employed and for E > 200 keV, proton-recoil detectors were used. In addition, calculations were performed with the Karlsruhe transport codes DTK and SNOW. The comparison of measured and calculated spectra, both functions of space and energy, showed that the spectrum around the sodium resonance is well described by 208 energy groups. A relationship is developed that is a function of the resonance parameters and the properties of the material concerned, from which it is possible to estimate the depth to which the flux depression at a resonance energy propagates into an adjacent material.