ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
Friedbert Kappler
Nuclear Technology | Volume 27 | Number 2 | October 1975 | Pages 224-232
Technical Paper | Reactor | doi.org/10.13182/NT75-A24289
Articles are hosted by Taylor and Francis Online.
The problem of strong space-dependent neutron spectra appearing at boundaries is studied at a sodium-iron interface in slab geometry. The spatial neutron spectra from a 14-MeV neutron source were measured in the energy range from 100 eV to 4.5 MeV. For the energy E < 200 keV, the time-of-flight method was employed and for E > 200 keV, proton-recoil detectors were used. In addition, calculations were performed with the Karlsruhe transport codes DTK and SNOW. The comparison of measured and calculated spectra, both functions of space and energy, showed that the spectrum around the sodium resonance is well described by 208 energy groups. A relationship is developed that is a function of the resonance parameters and the properties of the material concerned, from which it is possible to estimate the depth to which the flux depression at a resonance energy propagates into an adjacent material.