ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Richard E. Faw, John M. McCabe, Herbert S. Isbin
Nuclear Technology | Volume 1 | Number 6 | December 1965 | Pages 548-555
Technical Paper | doi.org/10.13182/NT65-A20582
Articles are hosted by Taylor and Francis Online.
The radiation-induced reaction between benzene and chlorine in the liquid phase has been studied using a continuous stirred-tank reaction system. The reaction was studied at higher exposure dose rates [2.66 × 1017 eV/(ml min)] and lower chlorine concentrations [0.025 M] than heretofore reported. In agreement with previous studies of both the ultraviolet- and the gamma-ray-induced reactions, the reaction was found to be a chain reaction, first order with respect to chlorine concentration, resulting in the formation of a mixture of the stereoisomers of 1,2,3,4,5,6-hexachlorocyclohexane. No effects of temperature or reaction-vessel surface-to-volume ratio were observed. An observed decrease in reaction rate with increasing holdup time in the reaction vessel was attributed to buildup of an inhibitor during the course of the reaction.