ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Ling Zou, Hongbin Zhang, Jess Gehin, Brendan Kochunas
Nuclear Technology | Volume 183 | Number 3 | September 2013 | Pages 535-542
Technical Paper | Fission Reactors / Thermal Hydraulics | doi.org/10.13182/NT13-A19440
Articles are hosted by Taylor and Francis Online.
A thermal-hydraulics (TH)/neutronics/crud multiphysics coupling framework to simulate the crud deposits' impact on crud-induced power shift (CIPS) phenomenon is proposed in this paper. The coupling among three essential physics (i.e., TH, crud, and neutronics) was implemented by coupling the computational fluid dynamics software STAR-CCM+, a newly developed crud module, and the neutronics code DeCART. A typical 3 × 3 pressurized water reactor fuel pin problem was analyzed with this framework and simulation results are presented. Time-dependent results are provided for a 12-month simulation. Simulation results provide the history of crud deposits inventory and their distributions on fuel rods, boron hideout amount inside crud deposits, and power shape changing over time. The obtained results clearly showed the power shape suppression in regions where crud deposits exist, a clear indication of CIPS phenomenon.