ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Project Omega emerges from stealth mode with plans to recycle U.S. spent fuel
Nuclear technology start-up Project Omega announced on February 11 that it has emerged from stealth mode with hopes of processing and recycling spent nuclear fuel into “long-duration, high-density power sources and critical materials for the nuclear industry.”
M. L. Williams, G. Ilas, M. A. Jessee, B. T. Rearden, D. Wiarda, W. Zwermann, L. Gallner, M. Klein, B. Krzykacz-Hausmann, A. Pautz
Nuclear Technology | Volume 183 | Number 3 | September 2013 | Pages 515-526
Technical Paper | Fission Reactors | doi.org/10.13182/NT12-112
Articles are hosted by Taylor and Francis Online.
A new statistical sampling sequence called Sampler has been developed for the SCALE code system. Random values for the input multigroup cross sections are determined by using the XSUSA program to sample uncertainty data provided in the SCALE covariance library. Using these samples, Sampler computes perturbed self-shielded cross sections and propagates the perturbed nuclear data through any specified SCALE analysis sequence, including those for criticality safety, lattice physics with depletion, and shielding calculations. Statistical analysis of the output distributions provides uncertainties and correlations in the desired responses, due to nuclear data uncertainties. The Sampler/XSUSA methodology is described, and example applications are shown for criticality safety and spent-fuel analysis.