ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
ORNL to partner with Type One, UTK on fusion facility
Yesterday, Oak Ridge National Laboratory announced that it is in the process of partnering with Type One Energy and the University of Tennessee–Knoxville. That partnership will have one primary goal: to establish a high-heat flux facility (HHF) at the Tennessee Valley Authority’s Bull Run Energy Complex in Clinton, Tenn.
Uffe C. Bergmann, Simon Baumgartner, Roger Bieli
Nuclear Technology | Volume 183 | Number 3 | September 2013 | Pages 298-307
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT13-A19419
Articles are hosted by Taylor and Francis Online.
An overview is given of existing design criteria to prevent fuel cladding dryout and the methods used in boiling water reactor reload analysis to evaluate the impact of channel bow on margins in the critical power ratio (CPR). Potential weaknesses in today's methodologies are discussed. Westinghouse in collaboration with KKL and Axpo - operator and owner of the Leibstadt NPP - has developed an enhanced CPR methodology based on a new criterion to protect against dryout during normal operation and with a more rigorous treatment of channel bow. The new steady-state criterion is expressed in terms of an upper limit of 0.01 for the dryout failure probability per year. This is considered a meaningful and appropriate criterion that can be directly related to the probabilistic criteria setup for the analyses of anticipated operation occurrences and accidents.In the Monte Carlo approach, a statistical modeling of channel bow and an accurate evaluation of CPR response functions allow the associated CPR penalties to be included directly in the plant safety limit minimum CPR and operating limit minimum CPR in a best-estimate manner. In this way, the treatment of channel bow is equivalent to all other uncertainties affecting CPR. Emphasis is put on quantifying the statistical distribution of channel bow throughout the core using measurement data.The enhanced CPR methodology has been implemented in the Westinghouse Monte Carlo code McSLAP. The methodology improves the quality of dryout safety assessments by supplying more-valuable information and better control of conservatisms in establishing operational limits for CPR.The methodology is demonstrated with application examples from the introduction at KKL.