ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Youho Lee, Thomas J. McKrell, Chao Yue, Mujid S. Kazimi
Nuclear Technology | Volume 183 | Number 2 | August 2013 | Pages 210-227
Technical Paper | Fuel Cycle and Management/Materials for Nuclear Systems | doi.org/10.13182/NT12-122
Articles are hosted by Taylor and Francis Online.
An experimental assessment was conducted of the silicon carbide (SiC) cladding oxidation rate in steam under conditions that are representative of loss-of-coolant accidents in light water reactors (LWRs). SiC oxidation tests were performed with monolithic alpha-phase tubular samples at atmospheric pressure for steam temperatures of 1140°C and 1500°C and a Reynolds number range of 40 to 330. Linear weight loss of SiC samples due to boundary layer controlled reaction of silica scale (SiO2 volatilization) was experimentally observed. The weight loss rate increased with increasing steam flow rate and temperature. Over the range of test conditions, SiC oxidation rates were shown to be about three orders of magnitude lower than the oxidation rates of Zircaloy-4. This underlines a weaker interplay between oxidation and mechanical property degradation in comparison with Zircaloy. SiC volatilization correlations for developing laminar flow in a vertical channel were formulated for LWR accident modeling.