ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
A. I. Mogilner, A. O. Skomorokhov, D. M. Shvetsov
Nuclear Technology | Volume 53 | Number 1 | April 1981 | Pages 8-18
Technical Paper | Fission Reactor | doi.org/10.13182/NT81-A17051
Articles are hosted by Taylor and Francis Online.
The problem of nuclear power plant noise diagnostics was formulated as a problem of the pattern recognition theory. The use of the entropy criterion, the difference of the conditional probability density criterion, and the Karhunen-Loeve expansion for feature extraction were discussed. The Bayes’ learning was applied to decision rule development. The non-parametric K nearest neighbor method was used for the probability density estimate. These methods were applied to a boiling type and a burnout identification with the help of an acoustic noise. The acoustic noise information about the heat exchange processes was presented in the dimensionality reduced space. The Bayes’ decision rule for the burnout identification was developed. The experiments on the Universal Combined Model and the Reactor Channel Model plants have demonstrated a high efficiency of the pattern recognition theory application to the reactor noise diagnosis.