ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
A. I. Mogilner, A. O. Skomorokhov, D. M. Shvetsov
Nuclear Technology | Volume 53 | Number 1 | April 1981 | Pages 8-18
Technical Paper | Fission Reactor | doi.org/10.13182/NT81-A17051
Articles are hosted by Taylor and Francis Online.
The problem of nuclear power plant noise diagnostics was formulated as a problem of the pattern recognition theory. The use of the entropy criterion, the difference of the conditional probability density criterion, and the Karhunen-Loeve expansion for feature extraction were discussed. The Bayes’ learning was applied to decision rule development. The non-parametric K nearest neighbor method was used for the probability density estimate. These methods were applied to a boiling type and a burnout identification with the help of an acoustic noise. The acoustic noise information about the heat exchange processes was presented in the dimensionality reduced space. The Bayes’ decision rule for the burnout identification was developed. The experiments on the Universal Combined Model and the Reactor Channel Model plants have demonstrated a high efficiency of the pattern recognition theory application to the reactor noise diagnosis.