ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
Aniruddha Kumar, R. B. Bhatt, Mohd. Afzal, J. P. Panakkal, Dhruba J. Biswas, J. Padma Nilaya, A. K. Das
Nuclear Technology | Volume 182 | Number 2 | May 2013 | Pages 242-247
Regular Technical Paper | Special Issue on the Symposium on Radiation Effects in Ceramic Oxide and Novel LWR Fuels / Decontamination/Decommissioning | doi.org/10.13182/NT13-A16434
Articles are hosted by Taylor and Francis Online.
Decontamination of fuel pins is an important process step in nuclear fuel fabrication. Decontamination assumes greater significance with respect to fuels containing plutonium, owing to both plutonium's high radiotoxicity arising from its long biological half-life and its relatively short radioactive half-life. The advantages of using a laser to decontaminate such radioactive surfaces over conventional cleaning techniques are well recognized. This paper describes detailed process optimization and field implementation of laser-assisted decontamination of fuel pins of the Prototype Fast Breeder Reactor (PFBR). A short-pulsed Nd-YAG laser has been effectively used to decontaminate the fuel pins by exposing their outer surface to laser radiation of an appropriate fluence. The laser parameters were controlled to achieve the required cleaning without causing any clad surface damage. Achievement of such was confirmed by evaluating the laser-cleaned surface using scanning electron microscopy, chemical composition studies by electron probe microanalysis, and Vicker's microhardness test.