ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
J. P. Moore, R. S. Graves, D. L. McElroy
Nuclear Technology | Volume 22 | Number 1 | April 1974 | Pages 88-93
Technical Paper | Fusion Reactor Materials / Material | doi.org/10.13182/NT74-A16277
Articles are hosted by Taylor and Francis Online.
The thermal conductivity λ, electrical resistivity ρ, and absolute Seebeck coefficient S of two grades of nearly isotropic graphite were measured from 300 to 1000°K both before and after neutron irradiation up to 5.0 × 1021 n/cm2 (>50 keV). Nominal irradiation temperatures were 823, 923, and 1023°K. The thermal resistance, λ−1, of the unirradiated graphites was proportional to T from 500 to 1000°K. Neutron irradiation decreased λ at 300°K by a factor of 4.5 and increased ρ at 300°K by 2.5, in general agreement with previous investigations, and irradiation changed S from small negative values to large positive ones. The product of thermal conductivity and electrical resistivity was nearly constant with fluence from 2.6 × 1021 to 5.0 × 1021 n/cm2.