ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
D.J. Michel, C. Z. Serpan, Jr., H. H. Smith, A. G. Pieper
Nuclear Technology | Volume 22 | Number 1 | April 1974 | Pages 79-87
Technical Paper | Fusion Reactor Materials / Material | doi.org/10.13182/NT74-A16276
Articles are hosted by Taylor and Francis Online.
The effect of cyclotron-implanted helium on the fatigue behavior of the molybdenum-base alloy TZM was investigated at 900°C. The results show that the helium-implanted TZM alloy fatigue specimens exhibit almost double the fatigue life of the unimplanted fatigue specimens. Optical and transmission electron microscope examination of specimen sections adjacent to the fracture revealed no evidence of significant differences between the helium-implanted and unimplanted specimens. However, transmission electron microscope examination of helium-implanted fatigue specimen sections annealed at 1310°C (0.55 Tm), following testing, revealed the presence of cavities within the grain matrix as well as cavities associated with dislocations. By comparison, the unimplanted specimens exhibited a structure characteristic of a well-annealed material. Based on the results of this study and on other available experimental evidence, it was concluded that the enhanced fatigue life of helium-implanted TZM alloy at 900°C resulted from the presence of substitutional helium-defect clusters, possibly associated with dislocations and/or precipitates. However, additional experiments will be necessary to firmly establish the details of the strengthening mechanism indicated by the present results.