ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Dry Ice Blasting: A Game-Changer for Safe Cleaning and Decontamination in Nuclear Power Plants
The nuclear energy industry is critical not only for meeting the world’s growing demand for electricity but also for advancing global decarbonization goals. As the sector evolves—through life extensions of existing plants, decommissioning, innovations like small modular reactors (SMRs) and microreactors, and new facility construction—the need for safe, efficient, and environmentally responsible maintenance and decommissioning continues to grow. Whether a plant is coming online, operating beyond its original design life, or entering decommissioning, cleanliness and operational integrity remain non-negotiable. That’s where dry ice blasting stands out—a powerful, safe cleaning method ideally suited for the high-stakes demands of nuclear environments.
D.J. Michel, C. Z. Serpan, Jr., H. H. Smith, A. G. Pieper
Nuclear Technology | Volume 22 | Number 1 | April 1974 | Pages 79-87
Technical Paper | Fusion Reactor Materials / Material | doi.org/10.13182/NT74-A16276
Articles are hosted by Taylor and Francis Online.
The effect of cyclotron-implanted helium on the fatigue behavior of the molybdenum-base alloy TZM was investigated at 900°C. The results show that the helium-implanted TZM alloy fatigue specimens exhibit almost double the fatigue life of the unimplanted fatigue specimens. Optical and transmission electron microscope examination of specimen sections adjacent to the fracture revealed no evidence of significant differences between the helium-implanted and unimplanted specimens. However, transmission electron microscope examination of helium-implanted fatigue specimen sections annealed at 1310°C (0.55 Tm), following testing, revealed the presence of cavities within the grain matrix as well as cavities associated with dislocations. By comparison, the unimplanted specimens exhibited a structure characteristic of a well-annealed material. Based on the results of this study and on other available experimental evidence, it was concluded that the enhanced fatigue life of helium-implanted TZM alloy at 900°C resulted from the presence of substitutional helium-defect clusters, possibly associated with dislocations and/or precipitates. However, additional experiments will be necessary to firmly establish the details of the strengthening mechanism indicated by the present results.