ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
D.J. Michel, C. Z. Serpan, Jr., H. H. Smith, A. G. Pieper
Nuclear Technology | Volume 22 | Number 1 | April 1974 | Pages 79-87
Technical Paper | Fusion Reactor Materials / Material | doi.org/10.13182/NT74-A16276
Articles are hosted by Taylor and Francis Online.
The effect of cyclotron-implanted helium on the fatigue behavior of the molybdenum-base alloy TZM was investigated at 900°C. The results show that the helium-implanted TZM alloy fatigue specimens exhibit almost double the fatigue life of the unimplanted fatigue specimens. Optical and transmission electron microscope examination of specimen sections adjacent to the fracture revealed no evidence of significant differences between the helium-implanted and unimplanted specimens. However, transmission electron microscope examination of helium-implanted fatigue specimen sections annealed at 1310°C (0.55 Tm), following testing, revealed the presence of cavities within the grain matrix as well as cavities associated with dislocations. By comparison, the unimplanted specimens exhibited a structure characteristic of a well-annealed material. Based on the results of this study and on other available experimental evidence, it was concluded that the enhanced fatigue life of helium-implanted TZM alloy at 900°C resulted from the presence of substitutional helium-defect clusters, possibly associated with dislocations and/or precipitates. However, additional experiments will be necessary to firmly establish the details of the strengthening mechanism indicated by the present results.