ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
CLEAN SMART bill reintroduced in Senate
Senators Ben Ray Luján (D., N.M.) and Tim Scott (R., S.C.) have reintroduced legislation aimed at leveraging the best available science and technology at U.S. national laboratories to support the cleanup of legacy nuclear waste.
The Combining Laboratory Expertise to Accelerate Novel Solutions for Minimizing Accumulated Radioactive Toxins (CLEAN SMART) Act, introduced on February 11, would authorize up to $58 million annually to develop, demonstrate, and deploy innovative technologies, targeting reduced costs and safer, faster remediation of sites from the Manhattan Project and Cold War.
H. E. Zittel, T. H. Row
Nuclear Technology | Volume 10 | Number 4 | April 1971 | Pages 436-443
Technical Paper | Symposium on Reactor Containment Spray System Technology / Reactor | doi.org/10.13182/NT71-A16253
Articles are hosted by Taylor and Francis Online.
It has been proposed that, following a pressurized water reactor (PWR) loss-of-coolant accident (LOCA), sprays be used for the twofold purpose of pressure suppression and fission product (largely 131I) removal. These proposed sprays must operate under severe conditions of high energy radiation (∼3 × 108 rads) and temperature (∼135°C). Studies have been carried out on a series of such sprays to ascertain their stability under these conditions. It was found that several of the solutions exhibit satisfactory behavior under accident conditions while others were discarded from consideration because of either thermal and/or radiation instability. The two sprays found to demonstrate acceptable stabilities under test conditions are the basic borate (0.15N NaOH-3000 ppm B) and basic borate thiosulfate (1 wt% Na2S2 O3-0.15N NaOH-3000 ppm B). However, even these demonstrate a radiolytic gas generation (H2) sufficient to be a possible safety hazard. Various studies have been carried out to establish G(H2) values and/or equilibrium radiolytic gas concentrations. Other studies were carried out on possible spray solution interaction with reactor containment metals and alloys.