ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
R. C. Wang, Chin Pan, Chuen-Horng Tsai
Nuclear Technology | Volume 94 | Number 1 | April 1991 | Pages 1-14
Technical Paper | Fission Reactor | doi.org/10.13182/NT91-A16217
Articles are hosted by Taylor and Francis Online.
An autoclave and a water treatment and monitoring system simulating the secondary side of a steam generator are used to investigate the hideout phenomena of sodium chloride in a tube-support-plate crevice. The primary-side heating tube is simulated by an internal heater. The experiments are performed at 1 atm pressure. The effects of heat flux, bulk concentration, crevice width, and the presence of a porous medium are investigated. It is found that the solute concentrates heavily near the upper end of the crevice. This concentration distribution in the axial direction is confirmed by a model developed in a parallel study. The hideout rate increases with increasing heat flux and bulk concentration. The concentration level in the crevice at a given time increases with increasing heat flux and bulk concentration and with decreasing crevice width. The presence of a porous medium in the crevice significantly enhances the concentration effect.