ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
D. Haas, J. van de Velde, H. Braun
Nuclear Technology | Volume 43 | Number 1 | April 1979 | Pages 100-108
Technical Paper | Material | doi.org/10.13182/NT79-A16178
Articles are hosted by Taylor and Francis Online.
In the Rapsodie-I experiment, two bundles, each containing 34 fast breeder reactor fuel pins, have been irradiated up to a peak burnup of 10.6 at.% and to a peak fast fluence (E > 0.1 MeV) of 6.65 × 1026 n/m2. One of the main objectives of this experiment was to evaluate the mechanical behavior of a bundle with spacer grids. Two types of spacer grid designs have been tested: namely, a brazed ferrule grid design and a honeycomb spot-welded grid design. The grid material was in every case niobium-stabilized austenitic stainless steel type W.Nr. 1.4981 in the annealed condition. The density and the dimensional measurements carried out on the spacer grids revealed that the geometrical changes in the grids were almost entirely due to material void swelling. In some cases, however, mechanical interactions between grids and wrapper tubes and also between fuel pins and grid cells have been emphasized. These interactions had no detrimental influence on the in-pile bundle behavior. The postirradiation mechanical tests carried out on the honeycomb spacer grids showed that the mechanical properties of the grid cells have not been significantly altered by the irradiation. A decrease of the grid material Young’s modulus has been correlated with void swelling. It has been concluded that the spacer grids operated satisfactorily despite their severe loading conditions.