ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Joseph M. Graf, Peter O. Strom
Nuclear Technology | Volume 25 | Number 4 | April 1975 | Pages 626-629
Technical Paper | Reactor Siting | doi.org/10.13182/NT75-A16118
Articles are hosted by Taylor and Francis Online.
In selecting a proper site for a nuclear power station, the consideration of radioactivity released in effluents can be handled in a straightforward manner using the U.S. Atomic Energy Commission’s proposed Appendix I to 10 CFR 50, which gives numerical guidelines for design objectives for meeting the criterion “as low as practicable” for radioactive material in light-water-cooled nuclear power reactor effluents. By relating the release of radioactive material, the site meteorological conditions, and site boundary distance through appropriate dose models, the suitability of a given site can be determined. “Rules of thumb” for comparing anticipated releases to design objectives can be constructed for rapid assessment using the maximum permissible concentration values of 10 CFR 20 as dose factors. These rules of thumb tend to underpredict the allowed releases except in the case of radiocesium in liquids. For gaseous releases, these rules of thumb can be made up in convenient nomogram form for a quick assessment of allowed releases based on local site meteorological conditions.