ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Kenneth C. Okafor, Tunc Aldemir
Nuclear Technology | Volume 81 | Number 3 | June 1988 | Pages 381-392
Technical Paper | Fuel Cycle | doi.org/10.13182/NT88-A16059
Articles are hosted by Taylor and Francis Online.
An empirical core model construction procedure for pressurized water reactor (PWR) in-core fuel management problems is presented that (a) incorporates the effect of composition changes in all the control zones in the core on a given fuel assembly, (b) is valid at all times during the cycle for a given range of control variables, (c) allows determining the optimal beginning of cycle (BOC) k∞ distribution as a single linear programming problem, and (d) provides flexibility in the choice of the material zones to describe core composition. Although the modeling procedure assumes zero BOC burnup, the predicted optimal k∞ profiles are also applicable to reload cores. In model construction, assembly power fractions and burnup increments during the cycle are regarded as the state (i.e., dependent) variables. Zone enrichments are the control (i.e., independent) variables. The model construction procedure is validated and implemented for the initial core of a PWR to determine the optimal BOC k∞ profiles for two three-zone scatter loading schemes. The predicted BOC k∞ profiles agree with the results of other investigators obtained by different modeling techniques.