ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Hasna J. Khan, George Kosaly
Nuclear Technology | Volume 75 | Number 1 | October 1986 | Pages 34-45
Technical Paper | Fission Reactor | doi.org/10.13182/NT86-A15975
Articles are hosted by Taylor and Francis Online.
Void fraction calculations have been performed using the subchannel drift-flux code CANAL. Using void and flow distributions in rod bundle geometry, a value of C0 has been estimated for bundle-averaged void fraction calculation in one-dimensional approximations. Successful prediction of the average void fraction is observed for the annular rod bundle geometry of the FRIGG experiment. In order to perform subchannel void fraction calculation, a C0 model has been developed for one-dimensional subchannel geometry. The implicit form of the C0 model developed accounts for void and flow conditions in the adjacent subchannels existing at the common interfaces, i.e., at the gap spacing between the subchannels. It appears that the magnitude of C0 varies between subchannels (annular rings of FRIGG geometry) but remains almost constant within each subchannel. Good agreement is observed between prediction and data for subchannel void fractions in axially uniform and nonuniform heated rod bundles.