ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
S. Goluoglu, H. L. Dodds
Nuclear Technology | Volume 112 | Number 1 | October 1995 | Pages 142-153
Technical Note | Fission Reactor | doi.org/10.13182/NT95-A15859
Articles are hosted by Taylor and Francis Online.
An improved core physics model of the High Flux Isotope Reactor (HFIR) has been developed and evaluated by comparing calculational results with experimental results and also with calculational results obtained with earlier models. Eleven-group and 4-group cross-section libraries that are problem specific, collapsed, and weighted for the HFIR are generated from the 39-group Advanced Neutron Source Reactor cross-section library (ANSL-V general-purpose neutron library), which is based on ENDF/B-V. A diffusion theory-based procedure to analyze the static neutronics of the reactor is developed. Precise cross sections that take fuel loading variations (not considered in previous work) into account are also generated and implemented into an improved R-Z geometry model of the reactor. Point-by-point power densities are calculated using a detailed mesh structure. The results show that the improved model and procedure developed in this work give good agreement with experiments at interior locations with significant deviations at the outer boundary of the reactor core, which is near the control blades. More importantly, the improved model and procedure provide better overall agreement with experimental results than earlier models.