ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano Nuclear wins Air Force contract for Kronos MMR
New York City–based advanced nuclear technology developer Nano Nuclear Energy has been awarded a Direct-to-Phase II Small Business Innovation Research contract for its Kronos micro modular reactor (MMR) by AFWERX, the innovation and venture arm of the U.S. Air Force. The contract calls for AFWERX, with the 11th Civil Engineering Squadron, to explore the feasibility of deploying the Kronos MMR Energy System at Joint Base Anacostia-Bolling (JBAB) in Washington, D.C.
Aligati Venkatesh, Suddhasattwa Ghosh, S. Vandarkuzhali, B. Prabhakara Reddy, K. Nagarajan, P. R. Vasudeva Rao
Nuclear Technology | Volume 182 | Number 1 | April 2013 | Pages 98-110
Technical Paper | Reprocessing | doi.org/10.13182/NT182-98
Articles are hosted by Taylor and Francis Online.
The DIFfusion of Actinides in EleCtrorefiner (DIFAC) computer code has been developed and is used to calculate the variation of the anode potential with time during constant current anodic dissolution of U, Zr, and U-Zr alloy in molten LiCl-KCl eutectic. A few algorithms are proposed within the framework of the DIFAC code for modeling the activation and concentration overpotentials during anodic dissolution. These algorithms are based on an iterative search procedure and would later be applied to modeling the electrorefining of a multicomponent metallic fuel system.