ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
Dean Dobranich, Mohamed S. El-Genk
Nuclear Technology | Volume 94 | Number 3 | June 1991 | Pages 372-382
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT91-A15815
Articles are hosted by Taylor and Francis Online.
Particle-bed reactors have been proposed to provide high-temperature, low-mass power sources for space-based operation. A computer program was prepared to simulate the thermal and mechanical response of a multilayered fuel particle operating in such a reactor. Issues of concern include temperature gradient and interference thermal stresses, along with the plastic and creep deformations associated with the high temperature of operation. The results of the computer simulations indicate that the interference thermal stress is much larger than the temperature gradient stress and the external pressure stress, and that permanent strain formation cannot be avoided for particles operating at temperatures greater than ∼2300 K. The results also reveal some interesting aspects unique to multilayered fuel particle performance. Two such aspects include (a) the interaction between interference thermal stress and high-temperature creep and (b) the effect of power ramp time on the formation of time-dependent plastic strains.