ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
IAEA conducts safety review of South Africa’s SAFARI-1
A team of nuclear safety experts with the International Atomic Energy Agency completed a five-day safety review of the SAFARI-1 reactor in Pelindaba, South Africa, focusing on aging management and continued safe operation of the 61-year-old 20-MW research reactor.
The IAEA team found that the SAFARI-1’s management and technical staff had a strong commitment to and involvement with the assessment but recommended that formal programs be established to address the aging reactor’s equipment.
A. Sarkar, S. K. Sinha, J. K. Chakravartty, R. K. Sinha
Nuclear Technology | Volume 181 | Number 3 | March 2013 | Pages 459-465
Technical Papers | Fuel Cycle and Management/Materials for Nuclear Systems | doi.org/10.13182/NT13-A15803
Articles are hosted by Taylor and Francis Online.
A model is developed to predict the in-reactor dimensional changes of the pressure tube materials in Indian pressurized heavy water power reactors (PHWRs) using artificial neural networks (ANNs). The inputs of the ANN are the alloy composition of the tube (concentration of Nb, O, N, and Fe), mechanical properties (yield strength, ultimate tensile strength, and percentage elongation), tube thickness, temperature, and fluence whereas axial elongation is the output. Measured elongation data from various tubes used in Indian PHWRs at Rajasthan Atomic Power Station (RAPS 4) are employed to develop the model. A three-layer feed-forward ANN is trained with the Levenberg-Marquardt training algorithm. It has been shown that the developed ANN model can efficiently and accurately predict the axial elongation of pressure tubes. The results show the high significance of Fe concentration and irradiation fluence in determining axial elongation.