ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
A. Sarkar, S. K. Sinha, J. K. Chakravartty, R. K. Sinha
Nuclear Technology | Volume 181 | Number 3 | March 2013 | Pages 459-465
Technical Papers | Fuel Cycle and Management/Materials for Nuclear Systems | doi.org/10.13182/NT13-A15803
Articles are hosted by Taylor and Francis Online.
A model is developed to predict the in-reactor dimensional changes of the pressure tube materials in Indian pressurized heavy water power reactors (PHWRs) using artificial neural networks (ANNs). The inputs of the ANN are the alloy composition of the tube (concentration of Nb, O, N, and Fe), mechanical properties (yield strength, ultimate tensile strength, and percentage elongation), tube thickness, temperature, and fluence whereas axial elongation is the output. Measured elongation data from various tubes used in Indian PHWRs at Rajasthan Atomic Power Station (RAPS 4) are employed to develop the model. A three-layer feed-forward ANN is trained with the Levenberg-Marquardt training algorithm. It has been shown that the developed ANN model can efficiently and accurately predict the axial elongation of pressure tubes. The results show the high significance of Fe concentration and irradiation fluence in determining axial elongation.