ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Former NRC commissioners lend support to efforts to eliminate mandatory hearings
A group of nine former nuclear regulatory commissioners sent a letter Wednesday to the current Nuclear Regulatory Commission members lending support to efforts to get rid of mandatory hearings in the licensing process, which should speed up the process by three to six months and save millions of dollars.
Bret Patrick van den Akker, Joonhong Ahn
Nuclear Technology | Volume 181 | Number 3 | March 2013 | Pages 408-426
Technical Papers | Fission Reactors/Fuel Cycle and Management/Radioactive Waste Management and Disposal | doi.org/10.13182/NT11-103
Articles are hosted by Taylor and Francis Online.
This paper presents a deterministic performance assessment for spent fuel from deep-burn modular high-temperature reactors (DBMHRs) in the proposed Yucca Mountain repository. Typical DBMHR designs utilize fuel elements manufactured from graphite. The fuel itself is made of TRISO particles containing the fissile material. The performance of the DBMHR spent fuel (DBSF) was evaluated in terms of the annual dose to the reasonably maximally exposed individual (RMEI) under various hydrogeological conditions. Part of this evaluation was an analysis of the graphite waste matrix and of the TRISO particles under repository conditions, the result of which indicates that the lifetime of the graphite matrix greatly exceeds that of the TRISO particles and that it is the graphite, not the TRISO particles, that serves to sequester the radionuclides within the fuel matrix. Under all 14 cases considered, DBSF is seen to comply with the annual dose standards set in Part 197 of Title 40 of the Code of Federal Regulations, for exposure via groundwater contamination under current climatic conditions. Parametric studies for the effect of waste matrix lifetime on annual dose received by the RMEI indicate that repository performance is sensitively linked to waste matrix durability because most radionuclides including actinides are likely to be released congruently with the graphite matrix.