ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Perpetual Atomics, QSA Global produce Am fuel for nuclear space power
U.K.-based Perpetual Atomics and U.S.-based QSA Global claim to have achieved a major step forward in processing americium dioxide to fuel radioisotope power systems used in space missions. Using an industrially scalable process, the companies said they have turned americium into stable, large-scale ceramic pellets that can be directly integrated into sealed sources for radioisotope power systems, including radioisotope heater units (RHUs) and radioisotope thermoelectric generators (RTGs).
M. Pellegrini, H. Endo, E. Merzari, H. Ninokata
Nuclear Technology | Volume 181 | Number 1 | January 2013 | Pages 144-156
Technical Paper | Special Issue on the 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-14) / Thermal Hydraulics | doi.org/10.13182/NT13-A15763
Articles are hosted by Taylor and Francis Online.
The effect of stratification on the flow in bounded geometries is studied through computational fluid dynamics and two different modelings of the turbulent heat flux: constant turbulent Prandtl number and Algebraic Heat Flux Model (AHFM). The main feature of the work is evaluation of the effect of buoyancy on the thermal quantities, velocity field, and related pressure drop. For evaluation of the turbulent heat flux and temperature field, AHFM has been demonstrated to be superior to the simple eddy diffusivity approach. However, serious concerns remain for the prediction of the velocity field in both isothermal and nonisothermal conditions, since greater uncertainties for the obtained pressure drop and related Fanning friction factor can be introduced. Incremental pressure drop is also investigated in conditions deviating from fully developed flows, in order to study stratification effects qualitatively using an engineering method.