ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Roger L. Martz
Nuclear Technology | Volume 180 | Number 3 | December 2012 | Pages 316-335
Technical Paper | Special Issue on the Initial Release of MCNP6 / Radiation Transport and Protection | doi.org/10.13182/NT12-A15347
Articles are hosted by Taylor and Francis Online.
Los Alamos National Laboratory Monte Carlo N-Particle transport code (MCNP) Version 6 (MCNP6) has been extended to include a new capability that permits tracking of neutrons and photons on an unstructured mesh that is embedded as a mesh universe within its constructive solid geometry capability. The mesh geometry is created through Abaqus/CAE using its solid modeling capabilities. MCNP transport results are calculated for mesh elements using a path length estimator while element-to-element tracking is performed on the mesh. The results from MCNP6 can be exported to Abaqus/CAE for visualization or other physics analysis. Three geometrically simple benchmark experiments were analyzed: Godiva, Osaka nickel sphere, and fusion neutron source vanadium cube. Computer run time is proportional to the number of mesh elements, element order, and element type specified in the input. Good agreement of our MCNP6 results with the measured neutron leakage for the nickel sphere and the measured neutron and gamma spectra from the vanadium assembly was observed.