ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Roger L. Martz
Nuclear Technology | Volume 180 | Number 3 | December 2012 | Pages 316-335
Technical Paper | Special Issue on the Initial Release of MCNP6 / Radiation Transport and Protection | doi.org/10.13182/NT12-A15347
Articles are hosted by Taylor and Francis Online.
Los Alamos National Laboratory Monte Carlo N-Particle transport code (MCNP) Version 6 (MCNP6) has been extended to include a new capability that permits tracking of neutrons and photons on an unstructured mesh that is embedded as a mesh universe within its constructive solid geometry capability. The mesh geometry is created through Abaqus/CAE using its solid modeling capabilities. MCNP transport results are calculated for mesh elements using a path length estimator while element-to-element tracking is performed on the mesh. The results from MCNP6 can be exported to Abaqus/CAE for visualization or other physics analysis. Three geometrically simple benchmark experiments were analyzed: Godiva, Osaka nickel sphere, and fusion neutron source vanadium cube. Computer run time is proportional to the number of mesh elements, element order, and element type specified in the input. Good agreement of our MCNP6 results with the measured neutron leakage for the nickel sphere and the measured neutron and gamma spectra from the vanadium assembly was observed.