ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Kyuhak Oh, Mark A. Prelas, Eric D. Lukosi, Jason B. Rothenberger, Robert J. Schott, Charles L. Weaver, Daniel E. Montenegro, Denis A. Wisniewski
Nuclear Technology | Volume 179 | Number 2 | August 2012 | Pages 243-249
Technical Paper | Radioisotopes | doi.org/10.13182/NT12-A14096
Articles are hosted by Taylor and Francis Online.
This paper presents a study on the optimization of the amount of energy deposited by alpha particles in the depletion region of a silicon carbide (SiC) alphavoltaic cell using Monte Carlo models. Three Monte Carlo codes were used in this study: SRIM/TRIM, GEANT4, and MCNPX. The models examined the transport of 5.307-MeV alpha particles emitted by 210Po. Energy deposition in a 1-m depletion region of SiC was calculated using an isotropic alpha source for a spherical geometry using GEANT4, and a monodirectional alpha source for a slab geometry using both SRIM/TRIM and GEANT4. In addition, an isotropic point source was modeled using GEANT4 and MCNPX for a slab geometry. These geometries were optimized for the maximum possible alphavoltaic energy efficiency. The models, which match very well, indicate that the maximum theoretical energy conversion efficiency, which was optimized for a SiC alphavoltaic cell, is [approximately]3.6% for the isotropic alpha source on a slab geometry and 2.1% for both the monodirectional alpha source on a slab geometry and the isotropic alpha source at the center of a sphere. This study provides a useful guide governing the upper limit of expected efficiency for an alphavoltaic cell using a linearly graded single junction SiC transducer.