ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
ORNL to partner with Type One, UTK on fusion facility
Yesterday, Oak Ridge National Laboratory announced that it is in the process of partnering with Type One Energy and the University of Tennessee–Knoxville. That partnership will have one primary goal: to establish a high-heat flux facility (HHF) at the Tennessee Valley Authority’s Bull Run Energy Complex in Clinton, Tenn.
Jinho Song, Changwook Huh, Namduk Suh
Nuclear Technology | Volume 178 | Number 3 | June 2012 | Pages 258-266
Technical Paper | Reactor Safety | doi.org/10.13182/NT12-A13592
Articles are hosted by Taylor and Francis Online.
Weaknesses of the current Severe Accident Management Guideline (SAMG) in handling the cooling of a molten core are discussed, and three improvements for the SAMG are presented. It is suggested that instrumentation to detect either a breach of the reactor vessel or a discharge of corium into the reactor cavity is essential to effectively perform the SAMG. A detailed analysis for a specific plant is necessary to make a decision as to whether preflooding or postflooding should be initiated for effective molten core cooling. Also, an optimal choice of depressurization capacity not only would significantly delay failure of the reactor vessel but also would increase the coolability margin of the molten corium in a reactor cavity. Analyses using the MELCOR computer code were performed for the Ulchin Units 1 and 2 and Kori Unit 1 nuclear power plants to illustrate the effectiveness of the proposed improvements in cooling of the molten core in the reactor cavity, where in-vessel retention of molten corium by preflooding is not feasible.