ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
NRC begins special inspection at Constellation’s Quad Cities plant
The Nuclear Regulatory Commission is conducting a special inspection at Constellation’s Quad Cities nuclear plant to review two events caused by battery issues. Neither event had any impact on public health or plant workers.
H. Cheikhravat, N. Chaumeix, A. Bentaib, C.-E. Paillard
Nuclear Technology | Volume 178 | Number 1 | April 2012 | Pages 5-16
Technical Paper | Safety and Technology of Nuclear Hydrogen Production, Control, and Management / Hydrogen Safety and Recombiners | doi.org/10.13182/NT12-A13543
Articles are hosted by Taylor and Francis Online.
The aim of the present work is to identify and characterize the type of combustion of hydrogen-air mixtures near the flammability limits for different initial temperatures (from 298 to 423 K) and pressures (100 and 250 kPa) relevant to pressurized water reactor conditions. This experimental study has been carried out using a spherical vessel equipped with a pressure transducer to monitor the pressure increase subsequent to the combustion and with two optical windows to record the flame propagation. From the schlieren images, different regimes of flame propagation have been identified depending on the temperature and pressure. The maximum pressure obtained experimentally has been compared to the theoretical maximum pressure for adiabatic combustion at constant volume. The flammability limits have been determined for different temperatures and pressures and are compared to the literature.