ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Nam-Il Tak, Min-Hwan Kim, Hong Sik Lim, Jae Man Noh
Nuclear Technology | Volume 177 | Number 3 | March 2012 | Pages 352-365
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT12-A13480
Articles are hosted by Taylor and Francis Online.
For the thermal analysis and the design of a prismatic gas-cooled reactor, local analyses have been widely used by modeling a unit cell or single assembly instead of a whole-core geometry. In spite of the recent rapid development of the computational fluid dynamics (CFD) technology, a whole-core CFD analysis for a prismatic reactor still requires tremendous computational expense and might be a heavy burden for designers desiring a large number of calculations with various design options.This paper provides a practical method for the whole-core thermal analysis of a prismatic gas-cooled reactor. The method combines the merits of CFD and system approaches in order to provide the detailed analysis without much computational expense. It solves the three-dimensional heat conduction equation for a solid as in a CFD code. On the other hand, one-dimensional conservation equations are adopted for a fluid as in a system code. With such a combination, a significant reduction in the computational expense, as well as reasonable accuracy, is achieved. In addition, the present method adopts the basic unit cell concept, which eliminates an elaborate grid generation process. Detailed geometries and materials of the prismatic fuel and reflector blocks are efficiently modeled using the basic unit cells.