ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
NRC begins special inspection at Constellation’s Quad Cities plant
The Nuclear Regulatory Commission is conducting a special inspection at Constellation’s Quad Cities nuclear plant to review two events caused by battery issues. Neither event had any impact on public health or plant workers.
Albert G. Gu
Nuclear Technology | Volume 177 | Number 2 | February 2012 | Pages 157-175
Technical Paper | Fission Reactors | doi.org/10.13182/NT12-A13363
Articles are hosted by Taylor and Francis Online.
This paper introduces a combined micro and macro (CMM) parameter perturbation theory for boiling water reactor (BWR) lattice design and optimization, which involves a large number of independent design variables and a large scale of variations. With this theory, engineers are able to meet the challenges from both accuracy and speed requirements. This theory was applied to the BWR fuel assembly lattice design in AREVA. A BWR fast lattice simulator (FLS) and a BWR fuel assembly lattice optimizer (BALO) were built and assisted engineers working on the lattice design and optimization. In addition to the discussion of this theory, the BALO/FLS calculation results are used to show that this theory can meet both speed and accuracy criteria of design as well as cover the large design range. Moreover, the results also show that two major perturbation issues in BWR lattice design and optimization, i.e., the large swing of average lattice enrichment and the thermal neutron black absorber's distribution as burnable poison can be resolved with the CMM perturbation theory. Finally, it is pointed out that the macro parameter perturbation combined with the micro parameter perturbation is extremely important to the accuracy.