ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
NRC begins special inspection at Constellation’s Quad Cities plant
The Nuclear Regulatory Commission is conducting a special inspection at Constellation’s Quad Cities nuclear plant to review two events caused by battery issues. Neither event had any impact on public health or plant workers.
Alan H. Wells, Albert J. Machiels
Nuclear Technology | Volume 176 | Number 3 | December 2011 | Pages 387-394
Technical Paper | Radiation Transport and Protection | doi.org/10.13182/NT11-A13315
Articles are hosted by Taylor and Francis Online.
According to the U.S. Nuclear Regulatory Commission's guidance based on concerns for potential channeling of neutrons between absorber particles, the criticality safety of transportation systems should not rely on credit for >75% of the boron in fixed neutron absorbers. The 75% efficiency (or effectiveness) factor was first formulated in 1987 for a cask to transport spent fuel from the Fermi Unit 1 (Fermi-1) fast breeder reactor. Fermi-1 fuel was highly enriched (25.6 wt%), and a critical condition could possibly be achieved in a dry environment. The 75% factor was later expanded to include low-enriched light water reactor (LWR) spent fuel, although the latter cannot achieve a critical state without the presence of a moderator. Under flooded conditions, the net effect of channeling is significantly reduced because the neutrons are nearly isotropically scattered by the moderator and impact the neutron absorber from all possible directions. Under dry conditions or under conditions representative in neutron attenuation measurements for absorber qualification, the neutrons impact the absorber mostly perpendicularly, and neutron channeling is maximized. The effect of neutron channeling for the Fermi-1 fuel and for a typical LWR fuel shipment was quantified using a methodology developed to apply experimental transmission data to calculations of the neutron angular distribution at the neutron absorber sheet, yielding the strength of the neutron channeling effect for a particular fuel type and cask basket geometry. These analyses show that neutron absorber qualification via a collimated neutron transmission measurement conservatively bounds the neutron channeling effect. Further imposition of a 75%-only credit leads to an overly conservative amount in neutron absorbers. For transport applications of LWR spent fuel, this results in increased costs with no measurable benefits to criticality safety.