ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
ORNL to partner with Type One, UTK on fusion facility
Yesterday, Oak Ridge National Laboratory announced that it is in the process of partnering with Type One Energy and the University of Tennessee–Knoxville. That partnership will have one primary goal: to establish a high-heat flux facility (HHF) at the Tennessee Valley Authority’s Bull Run Energy Complex in Clinton, Tenn.
Emma E. Regentova, Lei Zhang, Ajay K. Mandava, Vijay K. Mandava, Kranthi K. Potetti, Gongyin Chen, Zane Wilson
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 276-285
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Measurements and General Instrumentation | doi.org/10.13182/NT11-A12300
Articles are hosted by Taylor and Francis Online.
Megavoltage X-ray technology is utilized to detect fissile materials that can be smuggled by terrorists among commercial goods in cargo containers. Material discrimination with dual energy barriers is based on a ratio of penetration levels at respective energies. However, for a broad bremsstrahlung spectrum, the approach is not reliable because of its sensitivity to mass thickness. Furthermore, cargo containers usually have combinations of materials in a stack that further complicates material identification. It is imperative to study the capability of dual mega-electron-volt energy radioscopy to detect materials of interest for its practical application at customs. The time to perform this inspection automatically and the need to manually open the container for examination are to be minimized for the smooth transport of goods through the national border. In this work, Linatron K9, developed and manufactured by Varian Inc., Inspection and Security Products, is used for experimentation. By switching 6- and 9-MeV beams, an interlaced penetration response is obtained. The automated detection of materials of high atomic numbers in the stack of materials is performed by proposed adaptive thresholding algorithm. The evaluation of the system based on a worst case scenario shows that the system meets requirements defined in the congressional report in terms of true and false positive identification rates, smallest object resolution, and the processing time.