ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Johannes M. Bauer, James C. Liu, Alyssa A. Prinz, Sayed H. Rokni
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 198-201
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Accelerators | doi.org/10.13182/NT11-A12290
Articles are hosted by Taylor and Francis Online.
The Stanford Synchrotron Radiation Lightsource (SSRL) at the SLAC National Accelerator Laboratory (SLAC) is currently working on increasing its stored current from originally 100 to 500 mA. SSRL worked with the SLAC Radiation Protection Department on mitigating the possible radiological hazards from these upgrades. This paper describes the related analyses, new safety systems, and beam tests. The top-off injection mode (injection with beamline stoppers open) is essential for operation at high currents. The radiological consequences of various situations were analyzed, a new Beam Containment System (BCS) was implemented, and radiation surveys were performed during tests. Since March 2010, all beamlines have been operating in top-off mode. Operation with higher beam currents was also analyzed for radiological hazards, and a new Beamline BCS was installed. The storage ring is now operating with 200 mA during user runs, and tests are ongoing with higher beam currents. Soon the power of the injection current will also be raised from 1.5 W at present to 5 W maximal.