ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
David P. Hartmangruber, Bojan Petrovic
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 187-197
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Transport and Protection | doi.org/10.13182/NT10-165
Articles are hosted by Taylor and Francis Online.
IRIS is an advanced, smaller-power pressurized water reactor, with aggressive dose reduction objectives. Because of its integral configuration, IRIS has a thick downcomer region that significantly reduces the radiation field outside the reactor vessel, forming the technical basis for achieving the objectives. However, this feature also makes the shielding analysis very challenging. The goal of evaluating the dose rate distribution throughout the IRIS nuclear power plant and, in particular, in all accessible areas further amplifies the problem.The MAVRIC sequence of the SCALE6 code system was selected for this analysis. MAVRIC employs a hybrid deterministic-stochastic approach, with CADIS and Forward-CADIS methods being used to develop variance-reduction parameters for Monte Carlo simulations. MAVRIC was successfully applied to determine the dose rate distribution throughout a large portion of the IRIS nuclear power plant including the control room. The obtained results confirmed that the dose rate is below the set target limit in the relevant plant areas and, in particular, in the control room.