ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
ORNL to partner with Type One, UTK on fusion facility
Yesterday, Oak Ridge National Laboratory announced that it is in the process of partnering with Type One Energy and the University of Tennessee–Knoxville. That partnership will have one primary goal: to establish a high-heat flux facility (HHF) at the Tennessee Valley Authority’s Bull Run Energy Complex in Clinton, Tenn.
A. Kargar, E. Ariesanti, D. S. McGregor
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 131-137
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Materials for Nuclear Systems | doi.org/10.13182/NT11-A12281
Articles are hosted by Taylor and Francis Online.
In this study, the charge collection efficiencies (CCEs) of a 7.8- × 7.8- × 15.6-mm3 CdZnTe Frisch collar detector and a 2.1- × 2.1- × 4.1-mm3 HgI2 Frisch collar detector were measured and compared. Two Frisch collar devices were designed and fabricated to have identical aspect ratios of 2.0 to maintain similar weighting potential distributions. Pulse-height spectra were acquired from both Frisch collar devices with a standard calibration gamma-ray source of 137Cs, and the results are presented. As known, the Frisch collar alters the weighting potential within the planar device and enhances the CCE distributions. Thus, the parameters affecting these distributions have great impact on the pulse-height spectrum. The device length and mobility-lifetime product have great impacts on CCE. Primarily, crystal (device) length L directly affects CCE because more charge carriers are trapped in longer devices with longer traveling distances. Alternatively, the better mobility-lifetime product of the charge carriers enhances CCE of the fabricated device. It is shown in this study that as a result of similarity in shape for both devices (equal aspect ratio), the weighting potential distributions resemble each other. However, as a result of the trapping effect (due to both length and ), the CCE profiles are not the same, and the CdZnTe detector shows more uniform response to gamma rays and, therefore, better spectroscopic performance (even with a longer device length), which is confirmed through CCE simulations. Finally, by applying the CCE model to the HgI2 Frisch collar device, the mobility-lifetime products e, h e, h of electrons and holes were estimated to be 0.0008 and 0.00003 cm2V-1 , respectively, for the HgI2 crystal.