ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NS Savannah soon open to the public
The world’s first nuclear-powered merchant ship, the NS Savannah, will have a public site visit in Baltimore, Md., on Saturday, February 21.
To register for the event and find up-to-date details on the event’s address, time, and more, click here.
Jang Guen Park, Chan Hyeong Kim, Chul Hee Min, Jong Hwi Jeong, Jong Bum Kim, Jinho Moon, Sung-Hee Jung
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 113-117
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Measurements and General Instrumentation | doi.org/10.13182/NT175-113
Articles are hosted by Taylor and Francis Online.
In industrial-type single-photon-emission computed tomography (SPECT) systems, the use of relatively large detectors and collimators for effective detection of high-energy gammas significantly limits imaging performance, primarily because of insufficient measurement points. In the present study, a simple but very effective image-quality improvement method, the double-layer method, was tested. In this method, two layers of identical SPECT systems are employed in order to increase the number of measurement points and, thereby, improve the image quality. For experimentation, the two identical detector layers were arranged for 30 deg of rotation with respect to each other. The results showed that the double-layer method indeed significantly improves the image quality of the industrial SPECT system, substantially reducing errors in source size and location for both low-energy (99mTc) and high-energy (113mIn) gamma sources.