ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Former NRC commissioners lend support to efforts to eliminate mandatory hearings
A group of nine former nuclear regulatory commissioners sent a letter Wednesday to the current Nuclear Regulatory Commission members lending support to efforts to get rid of mandatory hearings in the licensing process, which should speed up the process by three to six months and save millions of dollars.
E. Hohmann, S. Safai, Ch. Bula, R. Lüscher, C. Harm, S. Mayer, O. Morath, E. Pedroni, S. Zenklusen
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 77-80
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Protection | doi.org/10.13182/NT11-A12273
Articles are hosted by Taylor and Francis Online.
Proton therapy is a widely used method of cancer treatment. Undesired secondary particles such as neutrons accompany the irradiation. Depending on the measurement position, the expected main dose contribution due to undesired secondary particles arises from neutrons with energies >20 MeV. Conventionally used Andersson and Braun-type survey instruments may underestimate the ambient dose equivalent up to a factor of 2 due to their limited response for high-energy neutrons. Therefore, it is desirable to investigate the neutron stray field in conditions comparable to therapy treatment, in particular the resulting dose to equipment placed in the treatment vault to estimate possible consequences to its operation. The irradiation of a water phantom with 200-MeV protons adequately reproduces these conditions.