ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
A. Querol, S. Gallardo, J. Ródenas, G. Verdú
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 63-72
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Transport and Protection | doi.org/10.13182/NT11-A12271
Articles are hosted by Taylor and Francis Online.
Quality control of mammography units is necessary to reduce the dose imparted to women as much as possible. Accurate characterization of the primary X-ray spectra is very useful for this purpose. Obtaining primary spectra normally involves the use of unfolding methods to be applied to pulse-height distributions (PHDs) measured in detector devices. In this work, the modified truncated singular value decomposition, the damped singular value decomposition, and the Tikhonov unfolding methods have been applied to several PHDs simulated with the Monte Carlo code MCNP5. The main goal of this paper is to test the capability of these unfolding methods to reproduce different primary spectra, corresponding to several high voltages and to the different anode materials molybdenum and rhodium. With this aim, an MCNP5 model has been developed to reproduce an actual experimental measurement including the X-ray focus, a Compton spectrometer, and a silicon detector. Quality parameters, such as the half-value layer, homogeneity factor, mean energy, and transmission curve, have been evaluated to see the effect of discrepancies observed between unfolded and theoretical spectra.