ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
K. Wong, B. Erdelyi
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 40-47
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Transport and Protection | doi.org/10.13182/NT11-A12267
Articles are hosted by Taylor and Francis Online.
Proton computed tomography (pCT) has become a lively research field in medical imaging. Its importance lies in its ability to accurately locate the Bragg peak where the tumor is positioned for proton therapy treatment planning. The quality of the pCT image is primarily affected by the spatial resolution and relative electron density resolution. A measure of the spatial resolution is the amount of expected deviation of the actual proton paths from the theoretically derived paths based on the experimentally available data, the so-called most likely paths (MLPs). The MLPs are derived using the assumption that the object to be imaged is homogeneous water. Geant4 Monte Carlo simulations were used to simulate the actual proton paths through some inhomogeneous phantoms and were compared with MLP calculations. Statistical analyses were conducted to determine the spatial resolution of the protons in different phantoms as a function of inhomogeneity location, amount, and density.