ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Vincent Hedberg, Mikhail Morev, Marco Silari, Zuzana Zajacová
Nuclear Technology | Volume 173 | Number 3 | March 2011 | Pages 327-331
Technical Note | Radiation Measurements and Instrumentation | doi.org/10.13182/NT11-A11666
Articles are hosted by Taylor and Francis Online.
Predictions of high-energy hadron activation of liquid argon in the calorimeter of A Thoroidal LHC ApparatuS (ATLAS) were carried out by folding particle flux spectra with the radionuclide production cross sections. Calculations were performed with a wide array of input data. Six sets of cross sections were folded with two sets of particle flux spectra, and the results were compared. The particle fluxes were obtained from simulations with the Monte Carlo radiation transport codes FLUKA and GCALOR. The cross-section sets were calculated according to the Rudstam and the Silberberg-Tsao formulas; taken from the Japanese Evaluated Nuclear Data Library (JENDL) and the Medium Energy Nuclear Data Library (MENDL); obtained from the Large Hadron Collider air activation studies; and compiled from various, predominantly experimental, sources.