ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Steinar Solstad, Rudi Van Nieuwenhove
Nuclear Technology | Volume 173 | Number 1 | January 2011 | Pages 78-85
Technical Paper | NPIC&HMIT Special / Nuclear Plant Operations and Control | doi.org/10.13182/NT11-A11486
Articles are hosted by Taylor and Francis Online.
The Halden Reactor Project (HRP) relies on extensive use of in-core instrumentation for both fuel and material testing in the Halden Boiling Water Reactor (HBWR). Separate loop systems have been installed in the reactor to simulate boiling water reactor and pressurized water reactor conditions. Reliable in-core instrumentation has been developed for measuring all key parameters both for fuel and material such as fission gas release, fuel temperature, fuel swelling/densification, cladding creep, etc. HRP has a fully equipped workshop for instrument production, and all our instruments are developed and made in-house. Instruments based upon the in-core linear variable differential transformer (LVDT) have been developed by HRP, such as the fuel pressure sensor, fuel rod expansion thermometer, fuel swelling, and cladding elongation. A special diameter gauge based upon the LVDT principle has also been developed to measure diametric changes of the fuel rods.In order to characterize the irradiation conditions (both nuclear and chemical), the HRP has developed the miniaturized gamma thermometer and various types of electrochemical potential sensors. In addition, different types of self-powered neutron detectors have been developed. Ongoing development of in-core instrumentation and measurement techniques focuses on high-temperature conditions and new methods for crack detection and corrosion of fuel cladding materials. Another topic under development is online corrosion detection by means of electrochemical impedance spectroscopy. Initial in-core measurements have been performed at HRP.