ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Fan Li, Belle R. Upadhyaya
Nuclear Technology | Volume 173 | Number 1 | January 2011 | Pages 17-25
Technical Paper | NPIC&HMIT Special / Nuclear Plant Operations and Control | doi.org/10.13182/NT11-A11480
Articles are hosted by Taylor and Francis Online.
Fault diagnosis is an important area in the nuclear industry for effective and continuous operation of power plants. All the approaches for fault diagnosis depend critically on the sensors that measure important process variables in the system. The locations of these sensors determine the effectiveness of the diagnostic methods. However, the emphasis of most fault diagnosis approaches is primarily on procedures to perform fault detection and isolation (FDI) given a set of sensors. Little attention has been given to the actual allocation of sensors for achieving efficient FDI performance. A graph-based approach, the directed graph (DG), is proposed in this paper as a solution for the optimization of sensor locations for efficient fault identification. The application of the DG modeling in deciding the locations of sensors based on the concepts of observability and fault resolution is introduced. A reliability maximization-based optimization framework for sensor placement from a fault diagnosis perspective is described. The helical coil steam generator unit of the International Reactor Innovative and Secure system is outlined to underscore the utility of the algorithms for large systems.