ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Byung-Ho Lee, Yang-Hyun Koo, Han-Soo Kim, Jae-Yong Oh, Young-Woo Lee, Dong-Seong Sohn, Wolfgang Wiesenack
Nuclear Technology | Volume 172 | Number 3 | December 2010 | Pages 246-254
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT10-A10933
Articles are hosted by Taylor and Francis Online.
Attrition-milling technology for fabricating mixed oxide (MOX) fuel was developed to mix the plutonium in UO2 fuels as homogeneously as possible. The fabricated MOX fuels were instrumented with temperature and pressure gauges that enabled one to measure the fuel temperature and rod internal pressure online. An irradiation test in the Halden reactor was performed to investigate the in-pile behavior of the fabricated MOX fuel. The irradiation of 1020 effective full-power days was successfully accomplished with good integrity of the test fuel rods. The rod average burnup reached [approximately]50 MWd/kg HM, and the measured fuel centerline temperature was [approximately]1000°C for the MOX fuels. A significant fission gas release was observed due to the high power level. The online measured in-pile performance data of the two attrition-milled MOX fuel rods were analyzed and compared with the fuel performance code COSMOS. COSMOS simulated the fuel centerline temperature and rod internal pressure for both MOX fuel rods. The analysis by COSMOS showed good agreement with the online measured in-pile behavior of MOX fuel.