ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Yung-Zun Cho, Gil-Ho Park, Han-Su Lee, In-Tae Kim, Dae-Seok Han
Nuclear Technology | Volume 171 | Number 3 | September 2010 | Pages 325-334
Technical Paper | Pyro 08 Special / Reprocessing | doi.org/10.13182/NT09-7
Articles are hosted by Taylor and Francis Online.
As an alternative to conventional Group I and II separation methods (such as adding a chemical agent and ion exchange), melt crystallization processes, zone freezing, and layer melt crystallization were tested for the separation (or concentration) of cesium and strontium fission products in a LiCl waste salt generated from an electrolytic reduction process of a spent oxide fuel. In these melt crystallization processes, impurities (CsCl and SrCl2) are concentrated in a small fraction of the LiCl salt by the solubility difference between the melt phase and the crystal phase. As experimental variables, initial molten salt temperature, crucible rising velocity in the zone freezing case, and cooling air flow rate in the layer crystallization case were used. In the zone freezing process, although the operating time is long (1.7 mm/h of crucible rising velocity) when assuming a LiCl salt reuse rate of 90 wt%, >90% separation efficiency for both CsCl and SrCl2 was shown. In the layer crystallization process, the crystal growth rate strongly affects the crystal structure and therefore the separation efficiency. At a 25 to 30 [script l]/min cooling air flow rate, 700 to 710°C initial molten salt temperature, and <5 g/min crystal growth rate, the separation efficiency of both CsCl and SrCl2 exceeded 90% by the layer crystallization process, assuming a LiCl salt reuse rate of 90 wt%.