ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Former NRC commissioners lend support to efforts to eliminate mandatory hearings
A group of nine former nuclear regulatory commissioners sent a letter Wednesday to the current Nuclear Regulatory Commission members lending support to efforts to get rid of mandatory hearings in the licensing process, which should speed up the process by three to six months and save millions of dollars.
D. Kontogeorgakos, I. E. Stamatelatos
Nuclear Technology | Volume 170 | Number 3 | June 2010 | Pages 460-464
Technical Note | Fission Reactors | doi.org/10.13182/NT10-A10331
Articles are hosted by Taylor and Francis Online.
The aim of this study was to validate a Monte Carlo-based model of the Greek Research Reactor-1 (GRR-1) developed with the MCNP5 code. The GRR-1 core was modeled in detail using the exact geometry without approximations. The inventory of the core was derived using the WIMS-ANL code, taking into account the different 235U burnup of each fuel assembly. The model was validated against experimentally determined control rod reactivity worth and neutron flux measurements performed in various irradiation positions. The ratio of the calculated-to-measured integral reactivity of each of the five control rods was found to be 0.972 ± 0.151, 1.083 ± 0.168, 1.156 ± 0.179, 0.874 ± 0.137, and 1.097 ± 0.170. The calculated-to-measured thermal neutron flux ratios ranged from 0.83 ± 0.04 to 1.22 ± 0.07. Therefore, good agreement between MCNP calculated and experimental values was observed. The GRR-1 core model will be fully implemented in the design of material irradiation experiments along with reactor safety and fuel management studies.