ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
Suddhasattwa Ghosh, B. Prabhakara Reddy, K. Nagarajan, P. R. Vasudeva Rao
Nuclear Technology | Volume 170 | Number 3 | June 2010 | Pages 430-443
Technical Paper | Reprocessing | doi.org/10.13182/NT10-A10329
Articles are hosted by Taylor and Francis Online.
The computer code PRAGAMAN has been developed for numerical simulation of electrotransport during molten salt electrorefining of spent metallic fuels. The code is based on the thermodynamic equilibriums among pairs of elements and their chlorides that exist at the anode-electrolyte salt and cathode-electrolyte salt interfaces. It uses nonlinear and linear equations to arrive at real solutions for all 16 possible conditions that could be envisaged with respect to the solubilities of U and Pu at the anode and cathode. It can handle the electrotransport of eight elements representing typical actinides, minor actinides, and fission products, as well as potential dependent electrotransport of U and Pu.