ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Former NRC commissioners lend support to efforts to eliminate mandatory hearings
A group of nine former nuclear regulatory commissioners sent a letter Wednesday to the current Nuclear Regulatory Commission members lending support to efforts to get rid of mandatory hearings in the licensing process, which should speed up the process by three to six months and save millions of dollars.
Suddhasattwa Ghosh, B. Prabhakara Reddy, K. Nagarajan, P. R. Vasudeva Rao
Nuclear Technology | Volume 170 | Number 3 | June 2010 | Pages 430-443
Technical Paper | Reprocessing | doi.org/10.13182/NT10-A10329
Articles are hosted by Taylor and Francis Online.
The computer code PRAGAMAN has been developed for numerical simulation of electrotransport during molten salt electrorefining of spent metallic fuels. The code is based on the thermodynamic equilibriums among pairs of elements and their chlorides that exist at the anode-electrolyte salt and cathode-electrolyte salt interfaces. It uses nonlinear and linear equations to arrive at real solutions for all 16 possible conditions that could be envisaged with respect to the solubilities of U and Pu at the anode and cathode. It can handle the electrotransport of eight elements representing typical actinides, minor actinides, and fission products, as well as potential dependent electrotransport of U and Pu.