ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
Fusion Science and Technology
January 2026
Latest News
From uncertainty to vitality: The future of nuclear energy in Illinois
Nuclear is enjoying a bit of a resurgence. The momentum for reliable energy to support economic development around the country—specifically data centers and AI—remains strong, and strongly in favor of nuclear. And as feature coverage on the states in the January 2026 issue of Nuclear News made abundantly clear, many states now see nuclear as necessary to support rising electricity demand while maintaining a reliable grid and reaching decarbonization goals.
Alfred L. B. Ho, Alexander Sesonske
Nuclear Technology | Volume 58 | Number 3 | September 1982 | Pages 422-436
Technical Paper | Fuel Cycle | doi.org/10.13182/NT82-A32978
Articles are hosted by Taylor and Francis Online.
Received December 1, 1981 Accepted for Publication March 10, 1982 A fast, yet accurate, fuel cycle analysis method-ology was developed to optimize the various options for in-core nuclear fuel management. The methodology encompasses two major parts, a multicycle point reactor model, PUFLAC, and a reload pattern optimization code called DSPWR. The PUFLAC model provides a convenient and reliable survey ability to explore the various fuel cycle scheme possibilities while DSPWR utilizes a direct search scheme to minimize the core power peaking with consideration given to local power-peaking factor variation. A two-dimensional nodal code used in this direct search scheme was developed for the power distribution calculations and is based on the widely used code, EPRI-NODE-P, with very good agreement obtained. This methodology has been demonstrated by considering an extended burnup three-to-four batch transition cycle analysis using Zion Unit 1 as a reference pressurized water reactor plant with realistic power-peaking constraints. The four-batch scheme can yield an increase in uranium utilization of ∼5% and a decrease in fuel cycle costs of ∼7%. The transition from a three to four-batch scheme can yield an overall increase in uranium utilization of 2.4% and a decrease in fuel cycle costs of ∼4%. The transition fuel-loading patterns optimized by DSPWR satisfy the core power-peaking constraint with a 2 to 3% margin at beginning-of-cycle.